Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 10(12): 3158-3173, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35575138

RESUMO

The development of an in vitro model to study vascular permeability is vital for clinical applications such as the targeted delivery of therapeutics. This work demonstrates the use of a perfusion-based 3D printable hydrogel vascular model as an assessment for endothelial permeability and its barrier function. Aside from providing a platform that more closely mimics the dynamic vascular conditions in vivo, this model enables the real-time observation of changes in the endothelial monolayer during the application of ultrasound to investigate the downstream effect of ultrasound-induced permeability. We show an increase in the apparent permeability coefficient of a fluorescently labeled tracer molecule after ultrasound treatment via a custom MATLAB algorithm, which implemented advanced features such as edge detection and a dynamic region of interest, thus supporting the use of ultrasound as a non-invasive method to enhance vascular permeability for targeted drug therapies. Notably, live-cell imaging with VE-cadherin-GFP HUVECs provides some of the first real-time acquisitions of the dynamics of endothelial cell-cell junctions under the application of ultrasound in a 3D perfusable model. This model demonstrates potential as a new scalable platform to investigate ultrasound-assisted delivery of therapeutics across a cellular barrier that more accurately mimics the physiologic matrix and fluid dynamics.


Assuntos
Caderinas , Hidrogéis , Caderinas/metabolismo , Permeabilidade Capilar , Hidrogéis/farmacologia , Permeabilidade
2.
Nat Protoc ; 16(6): 3089-3113, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031610

RESUMO

As engineered tissues progress toward therapeutically relevant length scales and cell densities, it is critical to deliver oxygen and nutrients throughout the tissue volume via perfusion through vascular networks. Furthermore, seeding of endothelial cells within these networks can recapitulate the barrier function and vascular physiology of native blood vessels. In this protocol, we describe how to fabricate and assemble customizable open-source tissue perfusion chambers and catheterize tissue constructs inside them. Human endothelial cells are seeded along the lumenal surfaces of the tissue constructs, which are subsequently connected to fluid pumping equipment. The protocol is agnostic with respect to biofabrication methodology as well as cell and material composition, and thus can enable a wide variety of experimental designs. It takes ~14 h over the course of 3 d to prepare perfusion chambers and begin a perfusion experiment. We envision that this protocol will facilitate the adoption and standardization of perfusion tissue culture methods across the fields of biomaterials and tissue engineering.


Assuntos
Células Endoteliais , Perfusão/métodos , Engenharia Tecidual/métodos , Humanos , Perfusão/instrumentação , Engenharia Tecidual/instrumentação
3.
J Mater Sci Mater Med ; 30(7): 79, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240399

RESUMO

Long-term, subcutaneously implanted continuous glucose biosensors have the potential to improve diabetes management and reduce associated complications. However, the innate foreign body reaction (FBR) both alters the local glucose concentrations in the surrounding tissues and compromises glucose diffusion to the biosensor due to the recruitment of high-metabolizing inflammatory cells and the formation of a dense, collagenous fibrous capsule. Minimizing the FBR has mainly focused on "passively antifouling" materials that reduce initial cellular attachment, including poly(ethylene glycol) (PEG). Instead, the membrane reported herein utilizes an "actively antifouling" or "self-cleaning" mechanism to inhibit cellular attachment through continuous, cyclic deswelling/reswelling in response to normal temperature fluctuations of the subcutaneous tissue. This thermoresponsive double network (DN) membrane is based on N-isopropylacrylamide (NIPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) (75:25 and 100:0 NIPAAm:AMPS in the 1st and 2nd networks, respectively; "DN-25%"). The extent of the FBR reaction of a subcutaneously implanted DN-25% cylindrical membrane was evaluated in rodents in parallel with a PEG-diacrylate (PEG-DA) hydrogel as an established benchmark biocompatible control. Notably, the DN-25% implants were more than 25× stronger and tougher than the PEG-DA implants while maintaining a modulus near that of subcutaneous tissue. From examining the FBR at 7, 30 and 90 days after implantation, the thermoresponsive DN-25% implants demonstrated a rapid healing response and a minimal fibrous capsule (~20-25 µm), similar to the PEG-DA implants. Thus, the dynamic self-cleaning mechanism of the DN-25% membranes represents a new approach to limit the FBR while achieving the durability necessary for long-term implantable glucose biosensors.


Assuntos
Técnicas Biossensoriais , Automonitorização da Glicemia , Glicemia/análise , Reação a Corpo Estranho/prevenção & controle , Membranas Artificiais , Acrilamidas/química , Alcanossulfonatos/química , Animais , Materiais Biocompatíveis , Colágeno/química , Hidrogéis , Inflamação , Masculino , Teste de Materiais , Polietilenoglicóis/química , Ratos , Estresse Mecânico , Cicatrização
4.
Biomacromolecules ; 20(5): 2034-2042, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31009565

RESUMO

The development of a hydrogel-based synthetic cartilage has the potential to overcome many limitations of current chondral defect treatments. Many attempts have been made to replicate the unique characteristics of cartilage in hydrogels, but none have simultaneously achieved high modulus, strength, and toughness while maintaining the necessary hydration required for lubricity. Herein, double network (DN) hydrogels, composed of a poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) first network and a poly( N-isopropylacrylamide- co-acrylamide) [P(NIPAAm- co-AAm)] second network, are evaluated as a potential off-the-shelf material for cartilage replacement. While predominantly used for its thermosensitivity, PNIPAAm is employed to achieve superior mechanical properties with its thermal transition temperature tuned above the physiological range. These PNIPAAm-based DNs demonstrate a 50-fold increase in compressive strength (∼25 MPa, similar to cartilage) compared to traditional single network hydrogels while also achieving cartilage-like modulus (∼1 MPa) and hydration (∼80%). In direct comparison to healthy cartilage (porcine), these hydrogels were confirmed to not only parallel the strength, modulus, and hydration of native articular cartilage but also exhibit a 50% lower coefficient of friction (COF). The exceptional cartilage-like properties of the PAMPS/P(NIPAAm- co-AAm) DN hydrogels makes them candidates for synthetic cartilage grafts for chondral defect repair, even in load-bearing regions of the body.


Assuntos
Materiais Biomiméticos/química , Cartilagem/química , Hidrogéis/química , Resinas Acrílicas/química , Animais , Células Cultivadas , Força Compressiva , Módulo de Elasticidade , Camundongos , Moléculas com Motivos Associados a Patógenos/química , Resistência à Tração , Molhabilidade
5.
ACS Macro Lett ; 8(6): 705-713, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-33912358

RESUMO

Hydrogels are frequently used biomaterials due to their similarity in hydration and structure to biological tissues. However, their utility is limited by poor mechanical properties, namely, a lack of strength and stiffness that mimic that of tissues, particularly load-bearing tissues. Thus, numerous recent strategies have sought to enhance and tune these properties in hydrogels, including interpenetrating networks (IPNs), macromolecular cross-linking, composites, thermal conditioning, polyampholytes, and dual cross-linking. Individually, these approaches have achieved hydrogels with either high strength (σ f > 10 MPa), high stiffness (E > 1 MPa), or, less commonly, both high strength and stiffness (σ f > 10 MPa and E > 1 MPa). However, only certain unique combinations of these approaches have been able to synergistically achieve retention of a high, tissuelike water content as well as high strength and stiffness. Applying such methods to stimuli-responsive hydrogels has also produced robust, smart biomaterials. Overall, methods to achieve hydrogels that simultaneously mimic the hydration, strength, and stiffness of soft and load-bearing tissues have the potential to be used in a much broader range of biomedical applications.

6.
ACS Biomater Sci Eng ; 4(12): 4104-4111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31633011

RESUMO

Towards achieveing a subcutaneously implanted glucose biosensor with long-term functionality, a thermoresponsive membrane previously shown to have potential to house a glucose sensing assay was evaluated herein for its ability to minimize the foriegn body reaction (FBR) and the resulting fibrous capsule. The severity of the FBR proportionally reduces diffusion of glucose to the sensor and hence sensor lifetime. However, efforts to reduce the FBR have largedly focused on anti-fouling materials that passively inhibit cellular attachment, particularly poly(ethylene glycol) (PEG). Herein, the extent of the FBR of a subcutaneously implanted "self-cleaning" cylindrical membrane was analyzed in rodents. This membrane represents an "actively anti-fouling" approach to reduce cellular adhesion. It is a thermoresponsive double network nanocomposite hydrogel (DNNC) comprised of poly(N-isopropylacrylamide) (PNIPAAm) and embedded polysiloxane nanoparticles. The membrane's cyclical deswelling/reswelling response to local body temperature fluctuations was anticipated to limit cellular accumulation. Indeed, after 30 days, the self-cleaning membrane exhibited a notably thin fibrous capsule (~30 µm) and increased microvascular density within 1 mm of the implant surface in comparison to a non-thermoresponsive, benchmark biocompatible control (PEG diacrylate, PEG-DA).

7.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28895241

RESUMO

The utility of thermoresponsive hydrogels, such as those based on poly(N-isopropylacrylamide) (PNIPAAm), is severely limited by their deficient mechanical properties. In particular, the simultaneous achievement of high strength and stiffness remains unreported. In this work, a thermoresponsive hydrogel is prepared having the unique combination of ultrahigh compressive strength (≈23 MPa) and excellent compressive modulus (≈1.5 MPa). This is accomplished by employing a double network (DN) design comprised of a tightly crosslinked, highly negatively charged 1st network based on poly(2-acrylamido-2-methylpropane sulfonic acid (PAMPS) and a loosely crosslinked, zwitterionic 2nd network based on a copolymer of thermoresponsive NIPAAm and zwitterionic 2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSAH). Comparison to other DN designs reveals that this PAMPS/P(NIPAAm-co-MEDSAH) DN hydrogel's remarkable properties stem from the intra- and internetwork ionic interactions of the two networks. Finally, this mechanically robust hydrogel retains the desirable thermosensitivity of PNIPAAm hydrogels, exhibiting a volume phase transition temperature of ≈35 °C.


Assuntos
Hidrogéis/química , Resinas Acrílicas/química , Força Compressiva , Transição de Fase , Polímeros/química , Temperatura de Transição
8.
Macromol Mater Eng ; 301(8): 935-943, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28529447

RESUMO

A self-cleaning membrane that periodically rids itself of attached cells to maintain glucose diffusion could extend the lifetime of implanted glucose biosensors. Herein, we evaluate the functionality of thermoresponsive double network (DN) hydrogel membranes based on poly(N-isopropylacrylamide) (PNIPAAm) and an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). DN hydrogels are comprised of a tightly crosslinked, ionized first network [P(NIPAAm-co-AMPS)] containing variable levels of AMPS (100:0-25:75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked, interpenetrating second network [PNIPAAm]. To meet the specific requirements of a subcutaneously implanted glucose biosensor, the volume phase transition temperature is tuned and essential properties, such as glucose diffusion kinetics, thermosensitivity, and cytocompatibility are evaluated. In addition, the self-cleaning functionality is demonstrated through thermally driven cell detachment from the membranes in vitro.

9.
Soft Matter ; 9(10): 2912-2919, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33335560

RESUMO

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels are widely studied smart materials, particularly for biomedical applications, but are limited by their mechanical strength. In this study, double network (DN) hydrogels were prepared with an asymmetric crosslink design and inclusion of an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). These P(NIPAAm-co-AMPS)/PNIPAAm DN hydrogels were sequentially formed with a tightly crosslinked 1st network comprised of variable levels of AMPS (100 : 0 to 25 : 75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked 2nd network comprised of PNIPAAm. The impact of AMPS content in the 1st network on the volume phase transition temperature (VPTT), morphology, deswelling-reswelling kinetics and mechanical properties was evaluated. Without substantially altering the VPTT of conventional PNIPAAm hydrogels but with improving thermosensitivity, the DN hydrogel formed with 25 : 75 wt% of NIPAAm:AMPS achieved exceptional strength, high modulus and high %strain at break.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...